OVERVIEW
GlassBoxAI-JsPlayers enables running inference for neural network models, decision forests, and graph neural networks directly in the browser or any JavaScript runtime, with no need for server compute.
AVAILABLE PLAYERS
RANDOM FOREST PLAYER
Decision tree ensemble inference for classification and regression
LAUNCH RF PLAYERQUICK START
1. Clone the Repository
git clone https://github.com/matthewJamesAbbott/GlassBoxAI-JsPlayers.git
cd GlassBoxAI-JsPlayers
2. Use in Your HTML
<! -- Example: Load and run an MLP model -->
<script src="MLPplayer.html"></script>
<script>
// Load your trained model JSON
const modelJson = /* your exported JSON model */;
// Run inference
const result = MLPPlayer.infer(modelJson, [/* input data */]);
console.log('Prediction:', result);
</script>
3. Load Your Model
Export your trained model from any GlassBoxAI trainer (CUDA, OpenCL, Pascal, Rust, C++, or JavaScript) in the standard JSON format.
GLASSBOXAI ECOSYSTEM
HIGH-PERFORMANCE TRAINERS (CUDA, OPENCL, NATIVE, Rust)
CUDA/OPENCL
GlassBoxAI-MLP
CUDA/OPENCL
GlassBoxAI-CNN
CUDA/OPENCL
GlassBoxAI-RNN
CUDA/OPENCL
GlassBoxAI-GNN
CUDA/OPENCL
GlassBoxAI-RandomForest
PASCAL
Pascal Facade Libraries
JAVASCRIPT TRAINERS
PURE JS
Javascript-MLP
PURE JS
Javascript-CNN
PURE JS
Javascript-RNN
PURE JS
Javascript-GNN
PURE JS
Javascript-RandomForest
FACADE JS
Javascript-FacadeCNN
MODEL FORMAT COMPATIBILITY
All models must be exported in the shared JSON format used across the GlassBoxAI ecosystem. This ensures seamless interoperability between:
- CUDA/OpenCL trainers – High-performance GPU-accelerated training
- Pascal libraries – Facaded implementations with deep inspection capabilities
- Rust/C++ implementations – Native performance training
- JavaScript trainers – Browser-based educational tools
- JavaScript players – This repository, for universal inference